Simple Functions

- **function definition -- usual form:**

 \[\text{cube}(x) \equiv x \times x \times x, \text{ where } x \text{ is a real number} \]

 then, e.g., \(\text{cube}(2) = 8 \)

- **However, defining a function and naming the function are conceptually distinct**

- **Lambda notation (Alonzo Church, 1941) provides for nameless functions:**

 \[\lambda(x) x \times x \times x \]

- **Can apply just like a named function:**

 \[(\lambda(x) x \times x \times x)(2) = 8 \]
Functional Forms

- **function composition**: has two function parameters, yields a function whose value is the first function applied to the result of the second

 \[h = f \circ g \] -- means apply g first, then apply f to the result

 example: if \(f(x) = x + 2 \)

 \[g(y) = 3 \times y \]

 then \(h(z) = f(g(z)) = (3 \times z) + 2 \)

- **construction**: takes a list of functions and applies each in turn to the argument, creating a list of results

 written by enclosing function names in brackets, e.g. \([g,h,i]\)

 example: if \(g(x) = x \times x \)

 \[h(x) = 2 \times x \]

 \[i(x) = x / 2 \]

 then \([g, h, i]\) (4) yields (16, 8, 2)

- **apply-to-all**: takes a single function and applies it to a list of arguments, creating a list of values

 denoted by \(\alpha \)

 example: if \(h(x) = x \times x \)

 then \(\alpha(h, (2, 3, 4)) \) yields (4, 9, 16)
Functional Programming

- **LISP: John McCarthy 1958 MIT**
 - List Processing => Symbolic Manipulation

- **Data Types**
 - Atoms: identifiers, symbols, numbers
 - Lists (Sexpressions)
 - (a b c d)
 - (a (b c) d e)

- All data structures are single-linked nodes where each node has 2 pointers and represents a list element.
Data Structures

- Single atom:

- List of atoms: (a b c)

- List containing list: (a (b c) d)
LISP Primitives

- **quote** => '

 (quote a) => 'a = a

 (quote (a b c)) => '(a b c) = (a b c)

- **car**: List => Sexp

 → One input arg => List

 → Returns first element of that list

 (car '(a b)) => a

 (car '((a b) c)) => (a b)

 (car '(a (b c))) => a

 (car 'a) => undefined

 (car '()) => undefined
LISP Primitives

- **cdr**: List \Rightarrow List
 - One input arg \Rightarrow List
 - Returns list of all elements but the first element
 - (cdr '(a b c)) \Rightarrow (b c)
 - (cdr '((a b) (c))) \Rightarrow ((c))
 - (cdr '(a)) \Rightarrow ()
 - (cdr 'a) \Rightarrow undefined
 - (cdr '()) \Rightarrow undefined
 - (cdr '55) \Rightarrow undefined
LISP Primitives

- cons: Sexp X List => List

 - 2 args as input: (cons a1 a2)
 a1 : Sexp
 a2 : List

 - Returns a2 with a1 inserted as its first element
 (cons 'a '(b c)) => (a b c)
 (cons 'a '()) => (a)
 (cons '(a b) '((c d) e)) => ((a b) (c d) e)

 - Be careful, cons will take non list (atom) arguments and form "dotted" pairs, e.g.
 (cons 'a 'b) => (a . b)
 car
cdr
Predicates are functions that return true (#t) or false (nil ()).

the following return #t if the arguments are of the indicated type, and nil () otherwise

- (symbol? 'a) => #t
- (symbol? '()) => ()
- (number? '55) => #t
- (number? 55) => #t
- (atom? 'a) => #t
- * (atom? '()) => #t
- (atom? '(a)) => ()
- (list? '(a)) => #t
- * (list? 'a) => ()
- * (list? '()) => #t
- (null? '()) => #t
- (null? '(a c)) => ()
Additional Functions

- **eq?** \(\text{Sexp X Sexp} \Rightarrow \{ \#t, () \} \)

 → Returns true if objects are equal through pointer comparison. Guaranteed to work on symbols

- **equal?** \(\text{Sexp X Sexp} \Rightarrow \{ \#t, () \} \)

 → Recursively compares two objects to determine if they are equal (works on symbols, atoms, numbers, and lists.

- **=, <, >** \(\text{number X number} \Rightarrow \{ \#t, () \} \)

 → Performs numeric comparison on two numbers

- **+, -, *, /** \(\text{number X number} \Rightarrow \text{number} \)

 → Performs designated numeric operation

 → Scheme provides exact and inexact numbers
Control Flow

- \(\text{cond} : (\text{predicate Sexp})^+ \implies \text{eval (Sexp)} \)

 → Evaluates (predicate Sexp) pairs.

 → Each predicate is evaluated in sequence until one is found to be true. The corresponding evaluated Sexp is returned.

 \[
 \text{(cond}
 \begin{align*}
 & (\text{Pred Sexp}) \\
 & (\text{Pred Sexp}) \\
 & : \\
 & (\text{Pred Sexp}) \\
 & (\text{else Sexp})
 \end{align*}
 \)

 \[
 \text{(cond}
 \begin{align*}
 & ((\text{null? lis1}) \text{ lis2}) \\
 & ((\text{atom? (car lis1)}) \text{ (car lis1)}) \\
 & (\text{else (cdr lis1)})
 \end{align*}
 \)
Additional Functions

- **Additional control flow primitives that are available:**

 (if Sexp_1 Sexp_2 [Sexp_3])

 if (Sexp_1) then Sexp_2 [else Sexp_3]

 (while Sexp_1 Sexp_2

 while (Sexp_1) do (Sexp_2) od

- **Blocking primitive:**

 (begin Sexp_1 Sexp_2 ... Sexp_n

- **Variable initialization primitive:**

 (set! x Sexp)

- **USE THESE FOR TESTING PURPOSES ONLY!**
(define (fctn_name arg₁ arg₂ ... argᵢ)
 Sexp)
)

(define (atom? atm)
 (cond
 ((list? atm) (null? atm))
 ((symbol? atm) #t)
 (else ()))
)
)

(define (equal? lis1 lis2)
 (cond
 ((atom? lis1) (eq? lis1 lis2))
 ((atom? lis2) ())
 ((equal? (car lis1) (car lis2))
 (equal? (cdr lis1) (cdr lis2)))
 (else ()))
)
)
Function Definition

(define (member? atm lis)
 (cond
 ((null? lis) ())
 ((eq? atm (car lis)) #t)
 (else (member? atm (cdr lis)))
)
)

(define (fac n)
 (cond
 ((eq? n 0) 1)
 (else (* n (fac (- n 1))))
)
)

(define (append lis1 lis2)
 (cond
 ((null? lis1) lis2)
 (else (cons (car lis1)
 (append (cdr lis1) lis2)))
)
)
Lambda Expressions

- Intuitively, *lambda expressions* allow one to define and use nameless functions and to pass them to be used in other functions

 \[
 \text{(lambda (lis) (car (cdr lis)))}
 \]

- Given to a lisp interpreter, the above function definition returns the second element in a list, e.g.

 \[
 \text{((lambda (lis) (car (cdr lis))) (a b c))}
 \]

 \[
 \text{returns "b"}
 \]
Lambda Expressions

- We CAN integrate the lambda expression into a function definition:

```
(define second
  (lambda (lis) (car (cdr lis)))
)
```

→ Once "evaled" by the interpreter, the function definition is "bound" to the name "second" such that

```
(second '(a b c)) => b
```

→ But, our "standard" way of defining functions will work too ...

```
(define (second lis)
  (car (cdr lis))
)
```

```
(second '(a b c)) => b
```

→ **SO, WHAT DOES THE LAMBDA EXPRESSION BUY US?**
WE NOW HAVE THE CAPABILITY TO PASS FUNCTION DEFINITIONS AS PARAMETERS!

Suppose that we want to write an "apply-to-all" function that takes a function definition and list as its arguments and applies its function argument to all elements in the list.

```
(define (mapcar fctn lis)
  (cond
    ((null? lis) ())
    (else (cons (fctn (car lis))
                (mapcar fctn (cdr lis))))
  )
)
```

define (mapcar fctn lis)

then

```
(mapcar (lambda (num) (* num num)) '(2 4 6))
```

returns a list containing the square of all elements in the original list, i.e.,

```
(4 16 36)
```
Lambda Expressions

Why not simply define a function “f” that performs a specified operation on one element and then pass it to mapcar, e.g.

```
(define (square x)
  (* x x))
(define (mapcar fctn lis)
  (cond
   ((null? lis) ())
   (else (cons (fctn (car lis))
              (mapcar fctn (cdr lis)))))
)

→ and then....

(mapcar square '(2 4 6)) ????
Scoping in LISP

- In reality, Lisp does allow one to define global and local variables, e.g.

  (define x 5) ; Global x  
  (set! x (car '(a b c)) ; Gbl/Lcl x

  If (set! ...) inside a function defn
  If (set! ...) outside a function defn

In reality, Lisp does allow programs to reference "unbound" variables, e.g.

  (define (f atm)
    (cons x y) ; y is an unbound variable
  ) ; x assumes the prev (set! x.... )

→ What are the implications of these capabilities with respect to scoping?
Scoping in LISP

- Consider the following example:

  (define (A ...
       ... (car X) ... ; unbound ref
     )

  (define (B Fctn X)
       ... Fctn ... ; invoke Fctn *
     )

  (define (C X Z)
       ... A ... ; invoke fctn A **
       ... (B A Z) ... ; invoke fctn B ***
     )
Scoping in LISP

• Assuming that "our" Lisp is *statically* scoped (and most current Lisps are statically scoped), let's consider the impact of the following invocation of C:

\[
(C \, '(i \, j) \, '(k \, l \, m))
\]

→ What is the binding of X in A after being invoked at ** ?

→ What is the binding of X in A after being sent to B through the call *** and being invoked at * ?

→ Is it what you expected?

• What is needed is the ability to bind an *execution environment* at same time a function is passed as a parameter! (Funarg Problem)

→ Solution: ... (B (function A) Z) ...
Consider the same scenario again:

```
(define (A ...) ... (car X) ...
)

(define (B Fctn X) ... Fctn ...
)

(define (C X Z) ... A ...
 ... (B (function A) Z) ...
)
```

In Pascal, static scoping and lexical scoping are effectively synonymous.

→ Although we are able to achieve "static" scoping through the use of the function primitive, is this also a "lexical" scoping?
XSCHEME

- XSCHEME is a **dialect** of LISP

- XSCHEME extends LISP
  - Minor syntax changes
    - will not affect us
  - Has extensions
    - additional functions
      we will not use

- We will use only the “pure” LISP parts of XSCHEME

Chapter 13, Slide 22
XSCHEME: Helpful Hints

- Place “(exit)” at end of file
- Run “xscheme < infile > outfile”

- For debugging purposes only:
  \[
  \rightarrow \quad (\text{if} \ (< \ x \ y ) \ x \\
  \quad (\text{if} \ \ldots \ldots \\
  \quad (\text{begin} \\
  \quad \text{(write } \text{“x is”}) \\
  \quad \text{(write } x \text{)} \\
  \quad (\text{if} \ (< \ x \ y ) \ x \\
  \quad (\text{if} \ \ldots \ldots \\
  \quad ) \quad ; \text{for begin}
  \]

Allows you to display intermediate computations