A Brief History of Programming Languages

- **1950's "Discovery and description"**
 - assembly
 - FORTRAN, ALGOL60, COBOL, LISP
 - basic implementation techniques
 - symbol tables
 - stack evaluation of arithmetic
 - activation records
 - garbage collection
 - languages as tools
 - late 1950's: first compilers (Hopper, etc.)
 - grammars and automata (Chomsky and Miller)
A Brief History of Programming Languages

- **1960's "Elaboration and analysis"**
 - theories of programming languages
 - more formal development
 - formal languages
 - automata
 - formal semantics
 - verification
 - bigger, more complex languages
 - PL/I, Simula, ALGOL68
 - late 1960's: theoretical work on compilers, program optimization
A Brief History of Programming Languages

- 1970's "Technology"
 - practical issues
 - applications of computer science
 - hardware cheaper, faster
 - software complexity increased
 - programming methodologies
 - structured programming
 - program verification
 - Pascal, C, Modula, Clu
A Brief History of Programming Languages

- **1980's**
 - parallel hardware => parallel language
 - very high-level languages
 - functional
 - logic
 - (object-oriented)
Specific Milestones

- **1944**: EDVAC (Electronic Discrete Variable Automatic Calculator) Report (von Neumann)
 - first description of a stored-program computer

- **1950**: First Assemblers

- **1954-57**: FORTRAN ("FORmula TRANslating system")
 - Backus et al @ IBM
 - Goals:
 - efficiency -- less than twice as slow as assembler
 - solve economic problem -- design, coding, debugging too expensive in assembly
 - elegance of design secondary
 - Versions I, II, III, IV
 - introduced separate compilation with II because programs were getting too large to compile without hardware errors (300 - 400 SLOCS)
 - "An existence proof for higher-level languages..."
Specific Milestones

- **1958-60: ALGOL 60 ("ALGOrithmic Language")**

 - by committee, including Backus

 - **Goals:**

 elegant, universal language (FORTRAN was for IBM)

 standard mathematical notation

 major contributions:

 - BNF
 - block structure
 - recursion
 - call-by-value/name
 - stack model of evaluation
 - semi-dynamic arrays

 but no formatted I/O -- too machine-dependent

- **1956-62: LISP ("LISt Processing")**

 - McCarthy @ MIT

 - for symbolic computation in AI

 - free of von Neumann concepts

 - (roughly) based on lambda-calculus
Specific Milestones

- **1956-62: APL (“A Programming Language”)**
 - Iverson @ Harvard
 - array processing
 - functional flavor, fairly non-von Neumann
 - didn’t catch on until 1970’s

- **1960: COBOL (“COmmon Business Oriented Language”)**
 - at U Penn by representatives of computer manufacturers
 - alienated from CS community
 - developed by commercial community; didn’t ask CS’ers
 - no interest in scientific or research implications
 - no BNF definition
 - no good books
 - commercial applications thought trivial by CS’ers
 - main contribution: file/record structure
 - syntax wordy, English-like
 - very slow at first, but survived because use mandated by DoD
Specific Milestones

- **1960’s: BASIC**
 - Kemeny and Kurtz @ Dartmouth
 - for teaching
 - access through terminals
 - novel idea: user time more important than machine time!
 - commercial success a surprise -- intended for their students
 - no real contributions

- **1962-67: SNOBOL4 (“StriNg Oriented symBOlic Language”)**
 - Griswold @ Bell Labs
 - string processing
 - introduced pattern-matching

- **1964-69: PL/I (“Programming Language I”)**
 - by committee @ IBM
 - tried to unify commercial and scientific features
 - very large; programmers learn a subset
 - Async tasks, except handling, pointer data types, array slices
Specific Milestones

- **1963-68: ALGOL68**
 - by committee
 - small number of orthogonal constructs
 - hard to learn -- too general and too flexible
 - poor implementations/documentation

- **1967-71: Pascal**
 - Wirth
 - small, simple -- for teaching
 - structured programming, fairly rich data structures

- **1967: Simula 67**
 - Data Abstraction
 - Class Concept
 - Data and operations packaged together
Specific Milestones

- **~1973: C**
 - Kernighan and Ritchie @ Bell Labs
 - low level, for systems programming
 - fairly small, fast
 - hard to read and maintain

- **mid 1970’s: Modula-2**
 - Niklaus Wirth
 - Pascal and modules
 - better for systems programming and large projects

- **mid 1970’s: PROLOG (“PROgramming in LOGic”)**
 - Kowalski and Colmerauer @ Edinburgh and Marseilles
 - non-von Neumann, based on first-order logic (but impure)
 - most applications in AI
 - Japanese 5th generation computing project chose it
Specific Milestones

- **mid 1970’s: SMALLTALK**
 - Xerox
 - object-oriented: shift in focus
 - not just a language; a whole system

- **mid 1970’s - 80: Ada**

 (after Ada Augusta, associate of Babbage -- “the first programmer”)

 - DoD

 - requirements developed slowly:
 Strawman, Woodman, Tinman, Ironman, Steelman

 - design contract won by CII-Honeywell Bull (Jean Ichbiah)

 - based on Pascal

 - large, complex

 - features:
 packages, tasks, real-time capabilities, exception handling
Specific Milestones

- **1980’s: C++**
 - Bjorne Stroustrup
 - C + classes
 - OOP in a popular language

- **1980’s: Hope, Miranda, LML, Haskell**
 - purely functional
 - based on lambda-calculus
 - higher-order functions, pattern matching, type inferencing
 - good for parallel machines?