Welcome to Computer Science 2574
Table of Contents

- Syllabus: Instructor Info
- Syllabus: Description & Texts
- Syllabus: Evaluation
- Syllabus: Curve
- Course Policies
- Class Organization
- Development System
- Copyright Notice
- Trademark Notice
Syllabus: Instructor Info

- **Instructor:** Bill McQuain
- **Email:** mcquain@cs.vt.edu
- **Office:** 631 McBryde Hall
- **Office Hours:** 9:00 - 11:00 MWF and by appointment
- **Phone:** 231-5605
Course Description

Credits: 1
Prerequisites: CS 1044 or CS 1344 (NO exceptions)

It is required that CS majors entering this course have successfully completed (grade ≥ C) in all prerequisites and have gained proficiency in the use of the ‘C’ programming language.

Purpose:

The purpose of this course is to provide a means for students to learn how to design and develop medium-large programming systems involving multiple modules using basic Data Structures and Software Engineering Techniques.

Texts:

- Recommended:

 C++ Plus Data Structures, N. Dell, C. Weems & M. Headington, D. C. Heath, ©1999

- References:

 C / C++ How to Program, H.M. Deitel & P.J. Deitel, Prentice Hall, ©1994

Syllabus: Evaluation

Evaluation and Grading:

- Point Distribution

 The final grade will be based on the number of points achieved over the following:

 (tentative dates)

 Lecture Tests (2) 25% Sept 30 & Nov 13
 Lecture Final (comprehensive) 25% TBA
 Programs (2) & Term Project 50% (10% + 15% + 25%)

- Grade Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-90</td>
<td>A</td>
</tr>
<tr>
<td>89-87</td>
<td>A-</td>
</tr>
<tr>
<td>86-84</td>
<td>B+</td>
</tr>
<tr>
<td>83-80</td>
<td>B</td>
</tr>
<tr>
<td>79-77</td>
<td>B-</td>
</tr>
<tr>
<td>76-74</td>
<td>C+</td>
</tr>
<tr>
<td>73-70</td>
<td>C</td>
</tr>
<tr>
<td>69-67</td>
<td>C-</td>
</tr>
<tr>
<td>66-64</td>
<td>D+</td>
</tr>
<tr>
<td>63-60</td>
<td>D</td>
</tr>
<tr>
<td>59-57</td>
<td>D-</td>
</tr>
<tr>
<td>56-0</td>
<td>F</td>
</tr>
</tbody>
</table>

- Curve

 A grade curve may or may not be employed in this course. The application of a curve is dependent upon class performance on tests and homework. The decision to utilize a curve rests entirely with the course instructor. If a curve is employed it will be an application of the Krider Curve as explained in the following pages.
The Krider Curve was developed by Dr. Daniel W. Krider, Prof. of Mathematics, Concord College, Athens, WV. The curve coerces grades into forming a distribution which more closely resembles a Normal Distribution. This is a partial solution to the problem of class grades tending to be skewed toward the lower values. The Krider Curve forces symmetrical clustering about the mean (property of central tendency) and smaller variance within the scores (less dispersion).

\[f(x) = x + \alpha (100 - x) \]
Application

- Variables:

 Given the following:

 \[X \leftrightarrow \text{Student's Grade} \]
 \[\theta \leftrightarrow \text{Student's Curved Grade} \]
 \[\alpha \leftrightarrow \text{Curve Percentage} \]

- Formula:

 The following formula is applied to each individual student grade:

 \[\theta = X + \alpha \left(100 - X \right) \]

- Example:

 IF \(\alpha = 1 / 3 \) THEN
 \[\Theta = X + \frac{1}{3} \left(100 - x \right) \]
 \[= \frac{2X + 100}{3} \]

 This is equivalent to averaging two \(X \) values with one grade of a 100. The lower scores receive a larger curve than the upper scores. An appropriate action when one considers that poorer students require more help. The curve ensures that a student will never surpass another student who scores higher.
Mathematical Derivation

- Determining Alpha:

Alpha can be set to achieve a desired class mean.

Where:

\[
\bar{x} \Leftrightarrow \text{class mean} \\
\mu \Leftrightarrow \text{desired mean} \\
n \Leftrightarrow \text{class size}
\]

The formula for deriving alpha’s value for a desired mean:

\[
\mu = \bar{X} + \alpha \left[\frac{\sum_{i=1}^{n} (100 - x_i)}{n} \right]
\]

\[
\mu = \bar{X} + \alpha \left[\frac{100n - \sum_{i=1}^{n} x_i}{n} \right]
\]

\[
\mu = \bar{X} + \alpha \left[100 - \bar{X} \right]
\]

\[
\alpha = \frac{(\mu - \bar{X})}{(100 - \bar{X})}
\]
Computer Science Dept. Policy

Departmental Policy on KOOFERS, OLD PROGRAMS, CHEATING, AND COMPUTER USE

Warning: All students in all Computer Science classes are responsible for reading and understanding the content of this document.

1. KOOFERS. The issue surrounding what students call Koofers actually breaks down into three distinct subissues: obtaining and using lists of questions without answers, obtaining and using answers to questions for study only, and handing in answers which were obtained from previous terms. (Note: question lists that are drawn up by students are also permitted; these guidelines apply to question lists drawn up by the instructor.)

 a. QUESTION LISTS. Any list of questions and other handouts that the instructor hands out in class may be used. Question lists such as previous exam forms may be used provided that the instructor voluntarily gave them to students at some point. Any use of question lists that were obtained without the instructor’s knowledge constitutes cheating. This includes use of exam forms which students removed from an examination room without the instructor’s permission. Student must never assume that they are free to carry away copies of an examination, unless they have been explicitly told that they can.

 b. ANSWERS FOR STUDYING. Graded examination papers or past term homeworks or assignments that were voluntarily returned by the instructor may be used in studying for tests, provided that they are not available at the time of the examination. (This rule applies to closed book examinations. Guidelines for open book examinations will be set by the instructor when the examination is handed out.) Using, or providing for use, graded answers that were not voluntarily returned by the instructor is cheating.

 c. HANDING IN ANSWERS. Handing in anything which counts for a grade and which is not the product of your effort is cheating. Obviously what you study will affect what you write; however, any direct use of koofers in preparing material for a grade is cheating, whether or not the original wording is maintained. From the time you have read the questions you are to answer, no koofers shall be consulted until your work has been handed in. Handing in a copy of someone’s homework from a previous term is cheating. Copying a key that was handed out in a previous term is cheating. Reading someone else’s homework or an answer key from the current term or any previous term before preparing your own answers (or after an initial draft but before completing the work to be handed in) and using someone else’s answer to questions you have been asked is cheating. Copying someone else’s answers onto an examination paper without accurately identifying the source is...
cheating, regardless of whether you are copying from someone else in the same class, from an exam from a previous term, or from any other source, and regardless whether the exam is in class or take home, open or closed book. The only legitimate use of answers obtained in previous terms is in studying before a test, when the questions on the test have not been handed out and answers are not being prepared. The permission to study in no case extends to copying answers and handing them in as your own. Changing wording but retaining the essence of the answer constitutes copying for the purpose of this rule. If you hand it in as yours, you must have worked it out yourself.

2. OLD PROGRAMS. The rules are the same as in 1c above. Students are free to use programs they wrote themselves in the past and programs (including utilities and library functions) provided or authorized by the instructor. Any use of programs except those the instructor has authorized in preparing any program assignment to be handed in for a grade constitutes cheating.

3. CHEATING. Any instance of copying the language, structure, ideas, and/or thought of another and passing it off as your own constitutes plagiarism. You may of course use sources explicitly provided for the course in question, but even then you must be careful not to claim the textbook author’s words, ideas, or algorithms as your own. Having a tutor do your homework for you in the process of tutoring you constitutes purchasing work for hire, as well as any more direct form of payment for product, and so constitutes cheating. Other forms of cheating include giving or receiving any unauthorized aid, assistance, or unfair advantage on any form of academic work. Note that those providing unauthorized assistance are as guilty as those receiving it.

Unless explicitly otherwise stated, all work to be handed in by any student must be exclusively the work of the student whose name it bears. Students may not work together on homework unless it is explicitly stated that they may. Students may not consult with one another on any programming project unless it is explicitly stated that they may. Students may not debug each other’s code, tell each other how to get around problems, or provide each other with fragments of code no matter how small, unless it is explicitly stated that they may. Students are allowed to help one another with questions pertaining solely to system use and hardware issues, provided that the solutions to those questions do not constitute the point of the exercise.

Any case of plagiarism, falsification, tampering with records, purchasing work for hire, or any other form of cheating of which the instructor or graduate assistants of a course become aware and can document will be reported to the Honor Board. The original work in question will be held by the instructor as evidence. THERE WILL BE NO WARNINGS, AND NO EXCUSES WILL BE ACCEPTED.

Students who become aware of cheating have a responsibility to report it. Reporting is not optional. Under the Virginia Tech Honor System (Section VII, article 1), “It is the duty of all members of the academic community to report
alleged violations promptly. Alleged violations must be reported in writing...”
(Taken from the 1988-89 Pylon, page 86; for further information on the honor code, see the Pylon, pages 81-91.) Students may report cheating in C.S. courses in either of two ways. (a) They can report the case to the Honor Board directly and in writing. (b) They can report the case to the instructor. Whichever they choose, such students must provide specifics of names and evidence. Telling the instructor "You know, a lot of people are cheating on this assignment” is not reporting the case to the instructor.

These guidelines constitute the official policy on cheating of the Department of Computer Science. Unless the instructor explicitly states otherwise, the rules contained herein are in force for all work in all Computer Science courses.

4. USE OF DEPARTMENT COMPUTERS

The following policy supplements the departmental policy on student use of computer accounts, as presented in the Virginia Tech Student Handbook, Pylon. The policy presented there concerning accounts on university mainframes remains in full force.

Undergraduates in computer science courses may be given access to Computer Science Department computer facilities. Use of such facilities is a loaned university resource, and as such is covered by several sections of the University Policies on Student Life, including the sections on Theft of State Funds. (See the section entitled, "Statement of Individual Responsibilities,” in the Virginia Tech Student Handbook, Pylon.) Access to departmental computer systems is provided for the express purpose of completing assignments for computer science courses, as outlined by the instructor. On rare occasions, access may also be provided for specifically authorized research, with or without course credit. Any other use whatsoever of any departmental computer is a violation of departmental policy. Acceptance and usage of any account on any departmental computer constitutes tacit acceptance of this policy. CS departmental policy stands in addition to the University’s "Computer and Communication Systems Use" policy as stated in the University Policies for Student Life.

Exception to this policy: Computer Science majors and a restricted group of CS minors will use CSUGRAD accounts for electronic mail and projects as defined by system administrators (see CSUGRAD handbook).

Unauthorized activities specifically prohibited include, but are not limited to, the following:

1. Attempting to penetrate system security for any reason, including (but not limited to) guessing/stealing user or system passwords, deliberately crashing or attempting to crash the system, attempting to override the system’s accounting or security routines, and having files intended to or actually causing systems to behave atypically. In particular, knowingly infecting any system with a virus,
Computer Science Dept. Policy (continued)

- worm, time bomb, trap door, Trojan horse, or any other kind of invasive program, is a serious violation.

2. On multiuser systems, preventing class master account or operating system access to any file or directory.

3. Playing games on any departmental system or maintaining game-related files on any lab computers.

4. Providing access to unauthorized users.

5. Using departmental computers to do assignments for courses outside computer science. Students are permitted to print papers for other courses after preparing them on their own machines; however, all preparation (word processing, etc.) must take place on non-CS-lab machines, unless express permission has been given.

6. Using a computer to transmit or store language which is obscene, vulgar, or abusive.

7. Maintaining any files on departmental equipment (as opposed to student-owned floppy diskettes) unless given specific permission by the instructor or supervising professor.

8. Downloading, copying, or retransmitting copyrighted software.

The above violations will be referred to Judicial Affairs, Office of Student Affairs. In addition, the State of Virginia may choose to bring criminal charges for serious violations which constitute infringements of state or federal law.

THE HONOR CODE WILL BE STRICTLY ENFORCED IN ALL COMPUTER SCIENCE COURSES. ALL ASSIGNMENTS SUBMITTED SHALL BE CONSIDERED GRADED WORK, UNLESS OTHERWISE STATED. ALL ASPECTS OF YOUR COURSE WORK ARE COVERED BY THE HONOR SYSTEM. HONESTY IN YOUR ACADEMIC WORK WILL DEVELOP INTO PROFESSIONAL INTEGRITY. THE FACULTY AND STUDENTS OF VIRGINIA TECH WILL NOT TOLERATE ANY FORM OF ACADEMIC DISHONESTY.

If any student needs special accommodations because of a disability, please contact the instructor during the first week of classes.
Class Organization

Sources for Help/Questions etc.
- CS2574Classmates (CS2574 USENET news group)
- CS lab consultants, McBryde 116
- CS2574 GTAs
- CS2574 Instructor

Microsoft C++ Help

CS 2574 USENET Newsgroup
- Connect to: vt.class.cs1704
- CS 2574 GTAs & others will respond to questions.
- Other Newsgroups: csugrad.pc-clone, csugrad.programming.c, comp.lang.c, comp.lang.visual
- A panel of "experts" will respond to questions.

CS 2574 ListServ
- Connect directions will posted online
- CS 2574 classmates, GTAs & others will respond to questions.

Lecture Instruction

Lecture
- Lectures will consist of presentations, applications, problems and solutions interspersed with classroom discussion.
Microsoft C++

- All programming assignments submitted are required to execute under the Microsoft C system.
- Programs will be tested under Windows NT systems using Microsoft Visual C++.
- It is the student’s responsibility to ensure that their programs execute correctly under the lab machines.
- Points will be deducted for programs not meeting this requirement.
- GTAs do not have time to go to dorms, etc. to grade programs on specific systems.

Program Demonstrations

- Demonstrations will take place in the McBryde CS Dept. Computer Lab for some assignments.
- Students may not bring their systems to the labs to execute their programs upon.
Backups

- **Students are responsible for making backup copies of all their work in this course.** Loss of work due to hard drive failure is NOT an acceptable excuse. Backup copies of files on the same hard drive are not backup copies. Backup copies of files on second hard drives are also risky. Backup copies should be maintained on two separate distinct storage mediums, (eg. hard drives and floppies).

- Backup copies should be maintained until after the end of the term and students have received their course grade. (The Army lives by triplicate for a reason.)

- Remember: Hard drives are mechanical devices. Hard drives fail. Plan for it. It is inevitable!

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author.

Information in this document is subject to change without notice and does not represent a commitment on the part of the author. No warranties, either express or implied, regarding the use of this document is made by the author. The author shall not be liable in any event for incidental or consequential damages, losses, costs, charges, claims, demands or claim for lost profits or grades, fees, or expenses of any nature or kind, in connection with, arising out of, the furnishing, performance, or use of this document. The software systems described in this document are copyrighted by their authors or companies and are subject to their own license or nondisclosure agreements.
Company Trademarks

Microsoft, Windows, MS, MS-DOS are registered trademarks™ of Microsoft Corporation.

Microsoft Visual C++ is a registered trademark™ of Microsoft Corporation.

IBM, OS/2 are trademarks™ of International Business Machines Corporation.

Adobe, Acrobat and Postscript are trademarks™ of Adobe Systems Inc.

Borland, Borland C++, and Turbo C++ are trademarks™ of Borland International Inc.

UNIX is a trademark™ of UNIX System Laboratories.

Netscape Navigator is a trademark™ of Netscape Communications Corporation.