Table of Contents

- Analysis Metrics
- Order of Magnitude
- Simple Analysis
- Array Summation: Order Analysis
- Array Summation: Time Analysis
- Complexity Classes
- Practical Applications
- Recursion Analysis
- Analysis: Recursive Factorial
- Analysis: Recursive Summation
- Algorithm Behavior

Algorithm Analysis == Complexity Analysis
Analysis Metrics

Program Running (Execution) Time Factors
- Machine Speed
- Programming Language
- Compiler Code Generation
- Input Data Size
- Time Complexity of Algorithm
 † Number of executed statements
 † Function of the size of the input (termed \(n \))

Running Time Factor Implications
- Compiler code generation & processor speed differences are too great to be used as a basis for impartial algorithm comparisons.

- Running Time Calculation Rules
- Running of assignment & I/O statements take time \(T(1) \).
 † Unit of time is arbitrary
- Running time of a sequence of statements is the largest time of any statement in the sequence.
- Running time of an IF statement is the condition evaluation \(T(1) + \text{MAX}(\text{statements executed when true or false}) \).
- Loop execution time is the sum, over the number of times the loop is executed, of the body time + \(T(1) \) for the loop setup and overhead, (e.g., while condition check, for initialization, check & increment).
 † Always assume that the loop executes the maximum number of iterations possible
Function Estimation

- Given an algorithm that takes time:
 \[T(n) = 3n^2 + 5n + 100 \]

- \(n^2 \) forms an “upper bound” on \(T(n) \) (asymptotic bound)

Big-O Notation

- Formally:
 \[f(n) \text{ is } O(g(n)) \text{ if there are constants } c > 0 \text{ and } N > 0, \text{ for which } f(n) \leq cg(n) \text{ for all } n > N. \]

- Shortcuts to determine \(O(f(n)) \):
 \[\begin{align*}
 & \hat{O}(f(n)) = O(\text{dominant term of } f(n)) \\
 & \hat{O}(\text{dominant term of } f(n)) = O(\text{dominant term of } f(n) \text{ omitting any coefficients of the dominant term}) \\
 & \hat{O}(\text{constants}) = O(1) \\
 & \hat{O} \text{ Omit the bases of the logarithms}
 \end{align*} \]
Example 1

Given:

```c
for (i = 0; i < n-1; i++)
    for (j = 0; j < i; j++)
        array[i][j] = 0;
```

Analysis:

- Loop i will execute n - 1 times -- this is the external sum.
- Loop j will execute i times -- this is the internal sum.
- The assignment statement is T(1).

\[
\sum_{i=1}^{n-1} \sum_{j=1}^{i} 3 = 3 \sum_{i=1}^{n-1} i = 3 \sum_{i=1}^{n-1} (n - i)
\]

Analysis of function:

\[
= 3 \left(1 + 2 + \ldots + n-2 + n-1 \right)
= 3 \frac{2}{2} \left(1 + 2 + \ldots + n-2 + n-1 \right)
= 3 \frac{1}{2} \left(1 + 1 + 2 + 2 + \ldots + n-1 + n-1 \right)
= 3 \frac{1}{2} \left((1+n-1) + (2+n-2) + \ldots + (n-1+1) \right)
= 3 \frac{1}{2} \left(n + n + \ldots + n \right)
= 3 \frac{1}{2} \left((n - 1) n \right)
= 3 \left(n^2 - n \right) / 2
\]

\[O\left(3 \left(n^2 - n \right) / 2 \right) = O\left(3n^2 / 2 - 3n/2 \right) = O\left(n^2 \right)\]
Array Summation: Order Analysis

typedef int rayType[m];

void sumItoN(const rayType ray, int n) {
 int i, j, t;
 i = 0; // a
 while (i <= n) { // b
 j = t = 0; // c
 while (j <= i) { // d
 t += ray[j]; // e
 j++; // f
 }
 array[i] = t; // g
 i++; // h
 }
}

Analysis will deal with statements (a .. h)

Order of Magnitude Analysis (Big O)

a T(1) by rule 1
b Sum from 0..n over statements c..h by rule 4
c Max(T(1),T(1)) = T(1) by rules 1 & 2
d Sum from 0..i over statements e..f by rule 4
e,f,g,h T(1) by rule 1
ef T(1) by rule 2

d = $O\left(\sum_{j=1}^{i+1} 1 \right) = O\left(i + 1 \right) = O\left(i \right)$

$\sum_{i=1}^{n+1} i = O\left(\frac{(n+1)(n+2)}{2} \right) = O\left(n^2 \right)$

$O(a,b) = \max(O(1),O(n^2)) = O(n^2)$
Array Summation: Time Analysis

Running Time Analysis

- With constants of proportionality
- Note: while, if conditions count as 1

\[= a + b (c + d (e + f) + g + h) \]

\[= 1 + \sum_{i=1}^{n+1} \left(3 + \sum_{j=1}^{i+1} 3 + 2 \right) \]

\[= 1 + \sum_{i=1}^{n+1} (8) + 3 \sum_{i=1}^{n+1} (i) \]

\[= 1 + 8(n+1) + 3 \left(\frac{(n+1)(n+2)}{2} \right) \]

\[= \frac{3}{2} n^2 + \frac{25}{2} n + 12 \]
Common Complexity Classes (growth curves)

Observations

- **constants of proportionality**, (coefficients & lesser terms), have very little effect for large values of \(n \).

For small problems the complexity makes little difference

- Large problems with **Order** > \(n \text{log}(n) \) cannot practically be executed

\[\dagger\] For \(n = 1000 \) (medium problems) \(n^2 \) algorithms can still be used
Practical Applications

Assume:
- 1 day = 100,000 sec. = 10^5
- Input size $n = 10^6$
- A computer that executes 1,000,000 Inst/sec
- C statement instructions

Algorithm Complexity Class Comparison

<table>
<thead>
<tr>
<th>Order: n^2</th>
<th>Order: $n \log_2 n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(10^6)^2$ Inst</td>
<td>$10^6 \log_2 10^6$ Inst</td>
</tr>
<tr>
<td>10^{12} Inst</td>
<td>$20 \cdot (10^6) = 2 \cdot (10^7)$</td>
</tr>
<tr>
<td>$10^{12} / 10^6$ secs to run</td>
<td>$2 \cdot (10^7) / 10^6$ run secs</td>
</tr>
<tr>
<td>10^6 secs to run</td>
<td>20 sec to run</td>
</tr>
<tr>
<td>$10^6 / 10^5$ days to run</td>
<td></td>
</tr>
<tr>
<td>10 days to run</td>
<td></td>
</tr>
</tbody>
</table>

Internal Class Comparisons
- Within complexity classes the differences between algorithms due to constants of proportionality, (coefficients & lesser terms), are not significant enough to warrant reporting except for certain (high usage) applications (e.g., sorting, searching)
Recurrence Relations

- Mathematical functions that define the running time of recursive functions.
- Recurrence relation functions are defined recursively in terms of the recurrence relation itself.

Method

- Step 1:
 Determine $T(n)$ for the general case, treating recursive calls as $T(\cdot)$.
- Step 2:
 Determine $T(0)$ or $T(1)$, etc. (i.e. the base cases).
- Step 3: (unrolling aka iterative expansion)
 Expand $T(n)$ determined in step 1 for $T(n-1)$, $T(n-2)$, etc.
- Step 4: (pattern search)
 Examine the expanded formulas, collect terms, reduce algebraically.
- Step 5:
 Apply an appropriate summation formula to the reduced formula.
- Step 6:
 Solve (reduce) the summation to determine:
 $T(n) = \text{polynomial}$
- Step 7:
 Apply Big-O to determine the order of $O(T(n))$.
Recursive Factorial Function

```c
int factorial ( int n ) {
    if ( n <= 1 )                        // A
        return ( 1 );                     // B
    else
        return( n * factorial( n-1 ) );   // C
}
```

Analysis

- Statement A: takes time T(1) for the condition evaluation
- Statement B: takes time T(1) for the return assignment
- Statement C: takes time T(1) for the other operations

(multiplication & return) + T(n-1), the time to determine !(n-1)
Analysis: Recursive Factorial

Analysis Continued

\[T(n) = T(\text{condition evaluation}) + T(\text{other operations}) + T(!n-1) \]

\[= 1 + 1 + T(n-1) \]
\[= T(n-1) + C \quad \text{(constant for time to perform condition evaluation and other operations)} \]

\[T(0) = T(1+1) = T(2) = K \quad \text{(condition + return assignment)} \]
\[T(1) = T(1+1) = T(2) = K \quad \text{(condition + return assignment)} \]
\[T(n-1) = T(n-2) + C \quad \text{substituting (n-1) in place of n above.} \]
\[T(n) = T(n-2) + C + C \quad \text{expanding } T(n) \text{ above} \]
\[T(n) = T(n-3) + C + C + C \]

\[\cdots \]
\[T(n) = T(1) + C + C + \ldots + C = K + C + C + \ldots + C \]
\[= T(n-i) + iC, \text{ for } n > i \]

\textbf{When } i = n-1:\n
\[T(n) = K + (n-1)C \]
\[O(T(n)) = O(K + (n-1)C) \]
\[= O(n) \]

\textbf{When } i = n:\n
\[T(n) = K + (n)C \]
\[O(T(n)) = O(K + (n)C) \]
\[= O(n) \]
Recursive Summation Function

```c
int rSum ( const float ray[], int n )
{ //recursive array summation
    if ( n <= 0 )                    // A
        return 0;                    // B
    else
        return(rSum(ray, n-1) + ray[n]);   // C
}
```

Analysis
- Statement A takes time T(1) for the condition evaluation
- Statement B takes time T(1) for the return assignment
- Statement C takes time T(1) for the other operations (addition & return) + T(n-1), the time to determine rsum(ray, n-1)
Analysis Continued

\[T(n) = T(\text{condition evaluation}) + T(\text{addition}) + T(\text{rsum(ray,n-1)}) \]
\[= 1 + 1 + T(n-1) \]
\[= T(n-1) + C \quad \text{(constant for time perform condition evaluation and other operations)} \]

\[T(0) = T(1+1) = T(2) = K \quad \text{(condition + return assignment)} \]
\[T(n-1) = T(n-2) + C \quad \text{substituting (n-1) in place of n above.} \]
\[T(n) = T(n-2) + C \quad \text{expanding } T(n) \text{ above} \]
\[T(n) = T(n-3) + C + C \]
\[\quad \vdots \]
\[T(n) = T(1) + C + C + \ldots + C = K + C + C + \ldots + C \]
\[= T(n-i) + iC, \text{ for } n > i \]

When \(i = n-1: \)
\[T(n) = K + (n-1)C \]
\[O(T(n)) = O(K + (n-1)C) \]
\[= O(n) \]

When \(i = n: \)
\[T(n) = K + nC \]
\[O(T(n)) = O(K + (n)C) \]
\[= O(n) \]
Algorithm Behavior

Categories

- Algorithms must be examined under different situations to correctly determine their efficiency for accurate comparisons.

Best Case Analysis

- Assumes the input, data etc. are arranged in the most advantageous order for the algorithm, i.e. causes the execution of the fewest number of instructions.
- E.g., sorting - list is already sorted; searching - desired item is located at first accessed position.

Worst Case Analysis

- Assumes the input, data etc. are arranged in the most disadvantageous order for the algorithm, i.e. causes the execution of the largest number of statements.
- E.g., sorting - list is in opposite order; searching - desired item is located at the last accessed position or is missing.

Average Case Analysis

- Determines the average of the running times over all possible permutations of the input data.
- E.g., searching - desired item is located at every position, for each search), or is missing.

Caveats

- Algorithms may have quite different Orders for the analysis categories, e.g., $O(1)$, $O(n^2)$, $O(n\log n)$, respectively.