Simple Searching

Table of Contents
- Sequential Searching
- Probability Ordering
- Sequential Search Code
- Binary Search
- Interpolation Search

Sequential Searching

Unsorted List
- Each element is compared to locate the desired element one after another starting at the head of the list.
- Worst Case Order = $O(N)$
 † desired element is at the end of the list.
- Average Case Order = $O(N/2)$
 † one half of the list must be scanned on the average.
- Assumes that the probability of each element in the list being searched for is equal.

Sequential Searching on a Sorted List
- Search stops when element is located or a larger element (ascending order) is encountered.
- Worst case and average case orders are the same as the unordered list.

Simple Searching
- Internal (primary memory) searching
- External => File Search
 - (Indexes, B-Trees, files, etc.)
Probability Ordering

Unequal Access Probabilities
- Implemented when a small subset of the list elements are accessed more frequently than other elements.

Static Probabilities
- When the contents of the list are static the most frequently accessed elements are stored at the beginning of the list.
- Assumes that access probabilities are also static

Dynamic Probabilities
- For nonstatic lists or lists with dynamic probability element accesses, a dynamic element ordering scheme is required:
 - Sequential Swap Scheme
 † Move each element accessed to the start of the list if it is not within some threshold units of the head of the list.
 - Bubble Scheme
 † Swap each element accessed with the preceding element to allow elements to “bubble” to the head of the list.
 - Access Count Scheme
 † Maintain a counter for each element that is incremented anytime an element is accessed.
 † Maintain a sorted list ordered on the access counts.

Sequential Search Code

Normal Sequential Search Function
```c
const int MISSING = -1;

int SeqSearch (const RayType A, Key K, int size) {
    int i;
    for ( i = 0 ; i < size; i++ ) {
        if ( K == A[i] )
            return ( i );
    }
    return ( MISSING);
}
```

- Coded inline to avoid function call overhead:
```c
inline int SeqSearch (const RayType A, Key K, int size) {
    for ( i = 0; ((i < size) && ( K != A[i])); i++ )
        return ( ( i < size ) ? ( i ) : ( MISSING ) );
}
```

- Problem: two comparisons in the loop are inefficient
- Search sequentially down to 0 using 0 as limit test.
```c
const int MISSING = -1;

int SeqSearch (const RayType A, Key K, int size) {
    int i;
    for ( i = size -1 ; ( (K != A[i]) && (i) ); i-- )
        if ( K == A[i] )
            return ( i );
    else
        return ( MISSING);
}
```
Sequential Search continued

Sentinel Method
- Store the desired element at the end of the array:

```c
int SeqSearch (RayType A, Key K, int size) {
    int i;
    A[size] = K;
    for ( i = 0; K != A[i]; i++ ) ;
    if ( i < size )
        return ( i );
    else
        return ( MISSING);
}
```

- Requires storage at the end of the array to always be available.
- Ensures that the loop will terminate.

Binary Search

Algorithm

IF desired element = middle element of list THEN
found
ELSE IF desired element < middle element
THEN set list to lower half & repeat the process
ELSE set list to upper half & repeat the process

Recursive Binary Search Function

```c
const int MISSING = -1;
int BinarySearch ( const RayType A, Key K, int L, int R) {
    int Midpoint = (L+R) / 2 ; // compute midpoint
    if  ( L > R ) // If search interval is empty return -1
        return MISSING ;
    else if ( K == A[Midpoint] )
        return Midpoint;
    else if ( K > A[Midpoint] )
        return BinarySearch(A, K, Midpoint + 1, R);
    else
        return BinarySearch(A, K, L, Midpoint - 1);
}
```

- Worst Case Order = \(O(\log_2 N) \)
- Note: for small lists a sequential search will usually be faster due to the midpoint computation and comparisons.

Subtle Algorithm Adjustments
- Minor changes to highly efficient algorithms (e.g., binary search) can have a drastic negative effect on execution.
- Changing the indexes to longints can increase execution time by a factor of 3.
- Using real division and truncating for the midpoint computation may slow execution by more than 10 times.
Interpolation Search

Variation of Binary Searching
- Attempts to more accurately predict where the item may fall within the list. Similar to looking up telephone numbers.
- Standard Binary Search Midpoint Computation:
 \[
 \text{Midpoint} = \frac{(L+R)}{2};
 \]
- General Binary Search Midpoint Computation:
 \[
 \text{Midpoint} = L + \frac{1}{2} * (R - L);
 \]
- Interpolation replaces the 1/2 (in the above formula) with an estimate of where the desired element is located in the range, based on the available values (be careful of int arithmetic):

\[
\]

- Example:
 - Assume 30K recs of SSNs in the range from 0 ... 600 00 0000
 - Searching for 222 22 2222 yields an initial estimate of:

\[
\text{Interpolation} = 0 + ((222222222 - 0) / (30000 - 0)) / (600000000 - 0); = 11111
\]

- Worst Case Order approximately = \(O(\log \log N) \)
- Can be assumed to be a constant of about 5 since \(\approx (\log \log 10^9) \)
- Assume the search values are evenly distributed over the search range, (! True for SSNs)
- Inefficient for searching small number of elements