\documentstyle[12pt]{article} %slides} % to use latex2html % change to article style % make begin/end environments empty % and change \Stitle to \section %\newenvironment{cslide}{\begin{slide}}{\vfill\end{slide}} %\newcommand{\Stitle}[1]{{\begin{center}\large\bf #1\end{center}\bigskip\bigskip}} \newenvironment{cslide}{}{} \newcommand{\Stitle}[1]{\section{#1}} \begin{document} \begin{cslide} \Stitle{Confidence Intervals for Predicted Response} Each response variable has some {\em true} value, which we will never know. From $r$ replicas of an experiment (holding factor levels constant), we can {\em estimate} response variable's true value by statistical inference. How far is our estimate from the true value? Suppose our data satisfies three conditions: \begin{description} \item[Independence of error components:] % each experiment outcome is in no way related to the outcome of any other experiment \item[Normal distribution of errors ($e_{ij}$) with zero mean] \item[Homogeneity of error variance:] % the variance of the errors $e_{i.}$ for all $i$ must be equal \end{description}
Then $t$-distribution yields confidence interval for some significance level ($\alpha$).